Isocyanide-Based Three-Component Synthesis of Functionalized 5-Alkylimino-2,5-dihydrofuran-3,4-dicarboxylate and Their Conversion to Substituted Furanones

Zinatossadat Hossaini,^a* Hosein Hamadi,^b Faramarz Rostami Charati,^c Mehdi Khoobi,^d and Abbas Shafiee^e

 ^aDepartment of Chemistry, Islamic Azad University, Qaemshahr Branch, 163 Mazandaran, Iran
 ^bDepartment of Chemistry, Tarbiat Modares University, Tehran, Iran
 ^cFaculty of Science, Gonbad Higher Education Center, Gonbad, Iran
 ^dDepartment of Chemistry, Zanjan University, Zanjan, Iran
 ^eDepartment of Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 14174, Iran
 *E-mail: zshossaini@yahoo.com Received June 12, 2010 DOI 10.1002/jhet.633
 Published online 15 March 2011 in Wiley Online Library (wileyonlinelibrary.com).

The zwitterionic 1:1 intermediates formed from alkyl isocyanides and acetylenic esters are trapped by alkyl bromides to form 5-alkylimino-2,5-dihydrofuran-3,4-dicarboxylate in relatively good yields at room temperature under solventless conditions. Hydrolysis of these compounds by HCl (5%) produced substituted furanones.

J. Heterocyclic Chem., 48, 626 (2011).

INTRODUCTION

Furans and their derivatives play an important role in organic chemistry because of their presence as key structural units in many natural products and pharmaceuticals, and as essential building blocks for the total synthesis of complex naturally occurring compounds. Furthermore, polyfunctionalized furans are versatile synthetic starting materials for the preparation of a variety of heterocyclic and acyclic compounds [1–9]. Especially, 2,5-disubstituted furan-3,4-dicarboxylates are very important starting materials in the synthesis of natural products containing tetrahydrofuran rings [10]. So far, many synthetic protocols for the synthesis of imino-lactones have been reported. The most widely used approach to iminolactones synthesis is the isocyanide-based reactions [11–18].

Furanones, a unit occurring in a large number of natural products [19], have caught the attention of both organic and bioorganic chemists because many of the butenolide-containing compounds may be considered as potential insecticides, bactericides, fungicides, phospholiphase A_2 inhibitors, etc [20,21]. Furanones are also versatile building blocks for the synthesis of a wide variety of biologically active compounds and complex natural products [22]. Despite these achievements, the development of efficient synthetic methods leading to the formation of this class of compounds with a new structural feature readily for further elaboration is still of current interest. Not surprisingly, a great degree of synthetic efforts have been devoted for developing versatile and efficient route to furanones [23].

As part of an ongoing development of efficient protocols for the preparation of biologically active heterocycles from common intermediates [24–26], we report the synthesis of iminolactones **4** *via* the three-component condensation of isocyanides **1**, dialkyl acetylenedicarboxylates **2**, and phenacyl bromide or its derivatives **3** in solvent-free conditions at ambient temperature (Scheme 1). Hydrolysis of 5-alkylimino-2,5-dihydrofuran-3,4-dicarboxylates **4** with aqueous HCl (5%) in dichloromethane afforded butenolides **5** (see Table 1).

RESULT AND DISCUSSION

As indicated in Scheme 1, the 1:1:1 addition reaction of isocyanides 1 with dialkyl acetylenedicarboxylates 2 and alkyl bromide or its derivatives 3 occurs smoothly at room temperature to produce 5-alkylimino-2,5-dihydrofuran-3,4-dicarboxylate 4. Hydrolysis of 4 with aqueous HCl (5%) in dichloromethane afforded furanones 5.

The structures of the products were deduced from their Infrared (IR), mass, ¹H-NMR, and ¹³C-NMR spectra. The mass spectra of these compounds displayed molecular ion peaks at the appropriate m/z values. The ¹H-

Vol 48

NMR spectrum of **4a** in CDCl₃ showed a singlet at $\delta = 1.39$ for *tert*-butyl group and a singlet at 2.36 for the methyl group. The methylene protons of CH₂Br are diastereotopic and showed two doublet at $\delta = 4.12$ (d, ²J = 11.0 Hz) and 4.52 (d, ²J = 11.0 Hz). Two peaks at $\delta = 160.9$ and 162.3 are observed in the ¹³C-NMR spectrum of **4a**, which are attributed to the carbonyl groups. The ¹H- and ¹³C-NMR spectra of **4b**–**4x** are similar to those for **4a** except for the imino or aromatic moieties and the substituents in position 4, which show characteristic resonances in appropriate regions of the spectrum.

To explore the scope of this reaction further, we extended our studies to the reaction of various dialkyl acetylenedicarboxylates and isocyanides with alkyl bromide. As indicated in Table 1, the reactions proceeded very efficiently in excellent yields. Although the mechanism of this reaction has not been established, a plausible rationalization can be advanced to explain product formation (Scheme 2).

On the basis of the well-established chemistry of isocyanides [27–31], it is reasonable to assume that zwitterionic intermediate **6** produced by reaction between the isocyanide and the dialkyl acetylenedicarboxylate adds to phenacyl bromide **3** resulting in the formation of **7**, which undergoes cyclization to give the 5-alkylimino-2,5-dihydrofuran-3,4-dicarboxylate **4**. Hydrolysis of 5-alkylimino-2,5-dihydrofuran-3,4-dicarboxylate **4** with aqueous HCl (5%) in dichloromethane afforded buteno-lides **5**.

In conclusion, a facile one-pot method for the synthesis of 5-alkylimino-2,5-dihydrofuran-3,4-dicarboxylate derivatives from readily accessible precursors has been proceed. These compounds are important starting materials in the synthesis of natural products containing tetrahydrofuran rings [10]. Hydrolysis of these compounds with HCl (5%) produced furanones in dichloromethane as the solvent. The advantages of our work are as follows: (1) the reaction is performed under neutral and mild conditions, (2) no catalyst is required for this reaction, and (3) the simplicity of the present procedure makes it an interesting alternative to the complex multistep approaches.

Entry	R	R′	Ar	Compound 4	Yield of 4 (%)	Compound 5	Yield of 5 (%)
1	tert-Butyl	Me	4-Me-C ₆ H ₄	4a	85	5a	82
2	tert-Butyl	Et	$4-Me-C_6H_4$	4b	84	5b	80
3	tert-Butyl	Me	$4-NO_2-C_6H_4$	4c	85	5c	82
4	tert-Butyl	Et	$4-NO_2-C_6H_4$	4d	87	5d	85
5	tert-Butyl	Me	$4-Ph-C_6H_4$	4e	83	5e	80
6	tert-Butyl	Et	$4-Ph-C_6H_4$	4f	80	5f	76
7	tert-Butyl	Me	$4-Cl-C_6H_4$	4 g	84	5g	82
8	tert-Butyl	Et	$4-Cl-C_6H_4$	4h	82	5h	80
9	tert-Butyl	Me	4-OMe-C ₆ H ₄	4i	87	5i	85
10	tert-Butyl	Et	4-OMe-C ₆ H ₄	4j	83	5j	78
11	Cyclohexyl	Me	4-OMe-C ₆ H ₄	4k	90	5k	86
12	Cyclohexyl	Et	4-OMe-C ₆ H ₄	41	92	51	80
13	Cyclohexyl	Me	$4-Me-C_6H_4$	4m	85	5m	83
14	Cyclohexyl	Et	$4-Me-C_6H_4$	4n	92	5n	82
15	Cyclohexyl	Me	$4-NO_2-C_6H_4$	40	87	50	80
16	Cyclohexyl	Et	$4-NO_2-C_6H_4$	4p	90	5р	85
17	Cyclohexyl	Me	$4-Ph-C_6H_4$	4q	85	5q	82
18	Cyclohexyl	Et	$4-Ph-C_6H_4$	4r	86	5r	78
19	Cyclohexyl	Me	$4-Cl-C_6H_4$	4 s	87	5 s	84
20	Cyclohexyl	Et	$4-Cl-C_6H_4$	4t	85	5t	80
21	Cyclohexyl	Me	Naphthyl	4u	85	5u	83
22	Cyclohexyl	Et	Naphthyl	4v	87	5v	85
23	tert-Butyl	Me	Naphthyl	4w	84	5w	82
24	tert-Butyl	Et	Naphthyl	4x	85	5x	84

 Table 1

 Synthesis of 5-alkylimino-2.5-dihydro-3.4-furandicarboxylates and furanones

EXPERIMENTAL

Melting points were taken on a Kofler hot stage apparatus and are uncorrected. ¹H-NMR and ¹³C-NMR spectra were obtained with a Bruker FT-500 spectrometer in CDCl₃, and tetramethylsilane was used as an internal standard. Mass spectra were recorded with a Finnigan Mat TSQ-70 spectrometer. IR spectra were acquired on a Nicollet Magna 550-FT spectrometer. Elemental analyses were carried out with a Perkin-Elmer model 240-C apparatus. The results of elemental analyses (C, H, and N) were within $\pm 0.4\%$ of the calculated values. Acetylenic ester, phenacyl bromide, or its derivatives and isocyanides were obtained from Fluka and were used without further purification.

General procedure for the preparation of compounds 4a-4x. A mixture of alkyl bromides (2 mmol) and dialkyl acetylenedicarboxylate (2 mmol) was stirred at room temperature. To this mixture, isocyanides (2 mmol) was added slowly. The reaction mixture was stirred for 12 h at room temperature and purified by short column chromatography (silica gel) using petroleum ether-ethyl acetate as eluent. The product was then crystallized from hexane to give the desired compound.

Dimethyl 2-bromomethyl-5-(tert-butylimino)-2-(p-tolyl)-2,5dihydrofuran-3,4-dicarboxylate (4a). Yellow crystals, yield: 0.74 g (85%), m.p. 121–123°C. IR (KBr) (v_{max}/cm^{-1}): 1726, 1680, 1652, 1583, 1263 cm⁻¹. ¹H-NMR: δ = 1.39 (9 H, s, Me₃C), 2.36 (3 H, s, Me), 3.78 (3 H, s, MeO), 3.90 (3 H, s, MeO), 4.12 (1 H, d, ²J = 11.0 Hz, CH), 4.52 (1 H, d, ²J = 11.0 Hz, CH), 7.16 (2 H, d, ³J = 7.6 Hz, 2 CH), 7.33 (2 H, d, ³J = 7.5 Hz, 2 CH). ¹³C-NMR: δ = 20.9 (Me), 29.5 (Me₃C), 36.8 (CH₂Br), 52.7 (MeO), 52.8 (MeO), 54.8 (Me₃C), 90.5 (C), 125.6 (2 CH), 129.4 (2 CH), 133.8 (C), 138.6 (C), 138.9 (C), 141.9 (C), 152.2 (C=N), 161.0 (C=O), 162.3 (C=O). Anal Calcd for C₂₀H₂₄BrNO₅: C, 54.80; H, 5.52; N, 3.20; found: C, 54.97; H, 5.74; N, 3.02.

Diethyl 2-bromomethyl-5-(tert-butylimino)-2-(p-tolyl)-2,5dihydrofuran-3,4-dicarboxylate (4b). Yellow crystals, yield: 0.78 g (84%), m.p. 126–128°C. IR (KBr) (v_{max}/cm^{-1}): 1725, 1678, 1662, 1580, 1260 cm⁻¹. ¹H-NMR: δ = 1.15 (3 H, t, ³J = 7.3 Hz, Me), 1.27 (3 H, t, ³J = 7.2 Hz, Me), 1.35 (9 H, s, Me₃C), 2.34 (3 H, s, Me), 4.10 (1 H, d, ²J = 11.2 Hz, CH), 4.25–4.30 (2 H, m, OCH₂), 4.32–4.40 (2 H, q, OCH₂), 4.45 (1 H, d, ²J = 11.2 Hz, CH), 7.15 (2 H, d, ³J = 7.5 Hz, 2 CH), 7.37 (2 H, d, ³J = 7.8 Hz, 2 CH). ¹³C-NMR: δ = 13.5 (Me), 14.0 (Me), 21.2 (Me), 29.5 (Me₃C), 37.4 (CH₂Br), 56.2 (Me₃C), 60.37 (OCH₂), 61.5 (OCH₂), 87.5 (C), 125.2 (2 CH), 128.9 (2 CH), 133.7 (C), 139.0 (C), 139.5 (C), 142.0 (C), 154.2 (C=N), 162.0 (C=O), 162.8 (C=O). Anal Calcd for C₂₂H₂₈BrNO₅: C, 56.66; H, 6.05; N, 3.00; found: C, 56.38; H, 5.74; N, 3.30.

Dimethyl 2-bromomethyl-5-(tert-butylimino)-2-(4-nitrophenyl)-2,5-dihydrofuran-3,4-dicarboxylate (4c). Yellow powder, yield: 0.80 g (85%), m.p. 157–159°C. IR (KBr) (ν_{max}/cm⁻¹): 1740, 1681, 1658, 1587, 1254 cm⁻¹. ¹H-NMR: δ = 1.39 (9 H, s, *Me*₃C), 3.79 (3 H, s, MeO), 3.90 (3 H, s, MeO), 4.16 (1 H, d, ${}^{2}J = 11.2$ Hz, CH), 4.44 (1 H, d, ${}^{2}J = 11.2$ Hz, CH), 7.68 (2 H, d, ${}^{3}J = 8.5$ Hz, 2 CH), 8.23 (2 H, d, ${}^{3}J = 8.5$ Hz, 2 CH). 13 C-NMR: $\delta = 29.5$ (*Me*₃C), 35.8 (CH₂Br), 53.1 (MeO), 53.4 (MeO), 55.2 (Me₃C), 89.9 (C), 123.8 (2 CH), 127.4 (2 CH), 139.5 (C), 140.6 (C), 143.7 (C), 148.0 (C), 151.0 (C=N), 160.7 (C=O), 161.9 (C=O). Anal Calcd for C₁₉H₂₁BrN₂O₅ (469.29): C, 48.63; H, 4.51; N, 5.97; found: C, 48.80; H, 4.32; N, 5.75.

Diethyl 2-bromomethyl-5-(tert-butylimino)-2-(4-nitrophenyl)-2,5-dihydrofuran-3,4-dicarboxylate (4d). Orange powder, yield: 0.86 g (87%), m.p. 158–160°C. IR (KBr) (v_{max}/cm^{-1}): 1743, 1695, 1664, 1586, 1249 cm⁻¹. ¹H-NMR: δ = 1.23 (3 H, t, ³J = 7.2 Hz, Me), 1.34 (3 H, t, ³J = 7.4 Hz, Me), 1.37 (9 H, s, Me₃C), 4.15 (1 H, d, ²J = 11.5 Hz, CH), 4.23–4.30 (2 H, m, OCH₂), 4.34 (1 H, d, ²J = 11.5 Hz, CH), 4.38 (2 H, q, ³J = 7.5 Hz, OCH₂), 7.67 (2 H, d, ³J = 8.4 Hz, 2 CH), 8.22 (2 H, d, ³J = 8.4 Hz, 2 CH). ¹³C-NMR: δ = 14.0 (Me), 14.5 (Me), 30.2 (Me₃C), 36.8 (CH₂Br), 56.8 (Me₃C), 61.4 (OCH₂), 62.0 (OCH₂), 90.0 (C), 124.8 (2 CH), 128.2 (2 CH), 140.0 (C), 141.4 (C), 143.5 (C), 148.4 (C), 151.9 (C=N), 160.5 (C=O), 161.9 (C=O). Anal Calcd for C₂₁H₂₅BrN₂O₇: C, 50.72; H, 5.07; N, 5.63; found: C, 50.54; H, 4.86; N, 5.37.

Dimethyl 2-bromomethyl-5-(tert-butylimino)-2-(p-biphenyl)-2,5-dihydrofuran-3,4-dicarboxylate (4e). Yellow powder, yield: 0.83 g (83%), m.p. 138–140°C. IR (KBr) (v_{max}/cm⁻¹): 1720, 1675, 1642, 1583, 1270 cm⁻¹. ¹H-NMR: $\delta = 1.34$ (9 H, s, Me₃C), 3.82 (3 H, s, MeO), 3.90 (3H, s, MeO), 4.23 (1 H, d, ${}^{2}J = 11.2$ Hz, CH), 4.54 (1 H, d, ${}^{2}J = 11.2$ Hz, CH), 7.34 $(1 \text{ H}, \text{ t}, {}^{3}J = 7.6 \text{ Hz}, \text{ CH}), 7.42 (2 \text{ H}, \text{ t}, {}^{3}J = 7.6 \text{ Hz}, 2 \text{ CH}),$ 7.65 (2 H, d, ${}^{3}J =$ 7.6 Hz, 2 CH), 7.67 (2 H, d, ${}^{3}J =$ 8.2 Hz, 2 CH), 7.74 (2 H, d, ${}^{3}J = 8.2$ Hz, 2 CH). 13 C-NMR: $\delta = 29.8$ (Me₃C), 38.5 (CH₂Br), 52.8 (MeO), 53.0 (MeO), 55.8 (Me₃C), 89.0 (C), 127.2 (2 CH), 127.8 (2 CH), 128.0 (2 CH), 128.2 (CH), 129.0 (2 CH), 136.5 (C), 138.0 (C), 141.2 (C), 142.6 (C), 143.2 (C), 159.4 (C=N), 162.0 (C=O), 162.6 (C=O). Anal Calcd for C₂₅H₂₆BrNO₅: C, 60.01; H, 5.24; N, 2.80; found: C, 60.32; H, 5.42; N, 3.00.

Diethyl 2-bromomethyl-5-(tert-butylimino)-2-(p-biphenyl)-2,5-dihydrofuran-3,4-dicarboxylate (4f). Yellow powder, yield: 0.84 g (80%), m.p. 165–167°C. IR (KBr) (v_{max}/cm^{-1}): 1725, 1674, 1650, 1585, 1272 cm⁻¹. ¹H-NMR: $\delta = 1.28$ (3 H, t, ³J = 7.5 Hz, Me), 1.35 (3 H, t, ${}^{3}J =$ 7.4 Hz, Me), 1.38 (9 H, s, *Me*₃C), 4.14 (1 H, d, ${}^{2}J = 11.0$ Hz, CH), 4.38–4.42 (2 H, m, OCH₂), 4.45 (2 H, q, ${}^{3}J = 7.3$ Hz, OCH₂), 4.57 (1 H, d, ${}^{2}J =$ 11.0 Hz, CH), 7.37 (1 H, t, ${}^{3}J = 7.6$ Hz, CH), 7.45 (2 H, t, ${}^{3}J =$ 7.5 Hz, 2 CH), 7.50 (2 H, d, ${}^{3}J =$ 7.6 Hz, 2 CH), 7.57 (2 H, d, ${}^{3}J = 8.4$ Hz, 2 CH), 7.61 (2 H, d, ${}^{3}J = 8.4$ Hz, 2 CH). ${}^{13}C$ -NMR: $\delta = 14.0$ (Me), 14.2 (Me), 30.4 (Me₃C), 36.7 (CH₂Br), 56.9 (C-N), 60.2 (OCH₂), 61.8 (OCH₂), 89.5 (C), 127.0 (2 CH), 127.5 (2 CH), 127.8 (2 CH), 128.0 (CH), 128.9 (2 CH), 136.6 (C), 137.7 (C), 140.4 (C), 142.7 (C), 143.0 (C), 158.6 (C=N), 161.5 (C=O), 162.7 (C=O). MS: m/z (%) = 529 (M⁺ + 2, 15), 527 (M⁺, 15), 514 (94), 468 (78), 314 (36), 181 (100), 152 (48), 57 (72). Anal Calcd for C₂₇H₃₀BrNO₅: C, 61.37; H, 5.72; N, 2.65; found: C, 61.24; H, 5.68; N, 2.53.

Dimethyl 2-*bromomethyl*-5-(*tert-butylimino*)-2-(4-*chlorophenyl*)-2,5-*dihydrofuran*-3,4-*dicarboxylate* (4g). Pale yellow powder, yield: 0.77 g (84%), m.p. 148–150°C. IR (KBr) ($v_{max}/$ cm⁻¹): 1730, 1682, 1638, 1590, 1257 cm⁻¹. ¹H-NMR: δ = 1.38 (9 H, s, Me_3 C), 3.75 (3 H, s, MeO), 3.92 (3 H, s, MeO),

May 2011

4.12 (1 H, d, ${}^{2}J$ = 11.0 Hz, CH), 4.45 (1 H, d, ${}^{2}J$ = 11.0 Hz, CH), 7.35 (2 H, d, ${}^{3}J$ = 8.0 Hz, 2 CH), 7.42 (2 H, d, ${}^{3}J$ = 7.9 Hz, 2 CH). 13 C-NMR: δ = 29.8 (*Me*₃C), 38.4 (CH₂Br), 52.4 (MeO), 53.4 (MeO), 58.4 (C—N), 90.4 (C), 127.8 (2 CH), 128.4 (2 CH), 136.0 (C), 137.7 (C), 142.8 (C), 148.7 (C), 154.0 (C=N), 161.9 (C=O), 162.4 (C=O). Anal Calcd for C₁₉H₂₁BrClNO₅: C, 49.75; H, 4.61; N, 3.05; found: C, 49.57; H, 4.40; N, 2.82.

Diethyl 2-bromomethyl-5-(tert-butylimino)-2-(4-chlorophenyl)-2,5-dihydrofuran-3,4-dicarboxylate (4h). Yellow powder, yield: 0.80 g (82%), m.p. 158–160°C. IR (KBr) (v_{max} /cm⁻¹): 1727, 1684, 1664, 1584, 1270 cm⁻¹. ¹H-NMR: $\delta = 1.25$ (3 H, t, ³J = 7.3 Hz, Me), 1.32 (3 H, t, ³J = 7.3 Hz, Me), 1.39 (9 H, s, Me₃C), 4.18 (1 H, d, ²J = 11.3 Hz, CH), 4.22–4.28 (2 H, m, OCH₂), 4.38 (2 H, q, ³J = 7.5 Hz, OCH₂), 4.42 (1 H, d, ²J = 11.3 Hz, CH), 7.35 (2 H, d, ³J = 8.0 Hz, 2 CH), 7.43 (2 H, d, ³J = 8.0 Hz, 2 CH). ¹³C-NMR: $\delta = 13.5$ (Me), 14.2 (Me), 29.8 (Me₃C), 37.7 (CH₂Br), 58.0 (C–N), 62.7 (OCH₂), 62.5 (OCH₂), 90.2 (C), 128.3 (2 CH), 129.0 (2 CH), 134.0 (C), 139.2 (C), 140.8 (C), 143.6 (C), 148.9 (C), 158.5 (C=N), 161.5 (C=O), 162.5 (C=O). Anal Calcd for C₂₁H₂₅BrClNO₅: C, 51.82; H, 5.18; N, 2.88; found: C, 51.64; H, 5.29; N, 2.58.

Dimethyl 2-bromomethyl-5-(tert-butylimino)-2-(4-methoxyphenyl)-2,5-dihydrofuran-3,4-dicarboxylate (4i). Yellow crystals, yield: 0.79 g (87%), m.p. 135–137°C. IR (KBr) ($v_{max}/$ cm⁻¹): 1725, 1684, 1657, 1580, 1267 cm⁻¹. ¹H-NMR: δ = 1.39 (9 H, s, *Me*₃C), 3.75 (3 H, s, MeO), 3.80 (3 H, s, MeO), 3.95 (3 H, s, MeO), 4.15 (1 H, d, ²J = 11.5 Hz, CH), 4.55 (1 H, d, ²J = 11.5 Hz, CH), 7.00 (2 H, d, ³J = 8.5 Hz, 2 CH), 7.35 (2 H, d, ³J = 8.5 Hz, 2 CH). ¹³C-NMR: δ = 29.7 (*Me*₃C), 37.0 (CH₂Br), 52.5 (MeO), 52.8 (MeO), 53.4 (MeO), 57.2 (C–N), 89.4 (C), 113.2 (2 CH), 128.5 (2 CH), 135.6 (C), 138.7 (C), 141.3 (C), 148.7 (C), 156.5 (C=N), 161.0 (C=O), 162.4 (C=O). Anal Calcd for C₂₀H₂₄BrNO₆: C, 52.88; H, 5.32; N, 3.08; found: C, 52.97; H, 5.53; N, 3.04.

Diethyl 2-bromomethyl-5-(tert-butylimino)-2-(4-methoxyphenyl)-2,5-dihydrofuran-3,4-dicarboxylate (4j). Pale yellow crystals, yield: 0.80 g (83%), m.p. 143–145°C. IR (KBr) ($v_{max}/$ cm⁻¹): 1734, 1678, 1648, 1576, 1258 cm⁻¹. ¹H-NMR: δ = 1.24 (3 H, t, ³J = 7.2 Hz, Me), 1.35 (3 H, t, ³J = 7.3 Hz, Me), 1.38 (9 H, s, Me₃C), 4.15 (1 H, d, ²J = 11.0 Hz, CH), 4.25–4.32 (2 H, m, OCH₂), 4.35 (2 H, q, ³J = 7.3 Hz, OCH₂), 4.54 (1 H, d, ²J = 11.0 Hz, CH), 6.85 (2 H, d, ³J = 8.4 Hz, 2 CH), 7.30 (2 H, d, ³J = 8.5 Hz, 2 CH). ¹³C-NMR: δ = 13.2 (Me), 14.5 (Me), 29.9 (Me₃C), 37.3 (CH₂Br), 53.4 (MeO), 57.5 (C–N), 62.5 (OCH₂), 62.8 (OCH₂), 90.7 (C), 114.5 (2 CH), 127.4 (2 CH), 135.6 (C), 138.6 (C), 141.3 (C), 148.8 (C), 156.3 (C=N), 161.9 (C=O), 162.2 (C=O). Anal Calcd for C₂₂H₂₈BrNO₆: C, 54.78; H, 5.85; N, 2.90; found: C, 54.55; H, 5.60; N, 2.73.

Dimethyl 2-bromomethyl-5-(cyclohexylimino)-2-(4-methoxyhenyl)-2,5-dihydrofuran-3,4-dicarboxylate (4k). Pale yellow crystals, yield: 0.86 g (90%), m.p. 137–139°C. IR (KBr) ($v_{max}/$ cm⁻¹): 1726, 1680, 1652, 1583, 1263 cm⁻¹. ¹H-NMR: δ = 1.22–1.88 (10 H, m, 5 CH₂), 2.35 (3 H, s, MeO), 3.72 (1 H, m, CH), 3.79 (3 H, s, MeO), 3.81 (3 H, s, MeO), 3.92 (3 H, s, MeO), 4.10 (1 H, d, ²J = 11.0 Hz, CH), 4.51 (1 H, d, ²J = 11.0 Hz, CH), 4.51 (1 H, d, ²J = 11.0 Hz, CH), 6.90 (2 H, d, ³J = 8.7 Hz, 2 CH), 7.34 (2 H, d, ³J = 8.7 Hz, 2 CH). ¹³C-NMR: δ = 24.8 (2 CH₂), 25.6 (CH₂), 32.8 (2 CH₂), 36.7 (CH₂Br), 52.7 (MeO), 52.9 (MeO), 53.1 (MeO), 56.8 (C–N), 86.5 (C), 114.2 (2 CH), 127.0 (2 CH),

134.6 (C), 138.2 (C), 140.3 (C), 148.9 (C), 156.0 (C=N), 160.9 (C=O), 162.0 (C=O). Anal Calcd for $C_{22}H_{26}BrNO_6$: C, 55.01; H, 5.46; N, 2.92; found: C, 54.72; H, 5.24; N, 2.70.

Diethyl 2-bromomethyl-5-(cyclohexylimino)-2-(4-methoxyphenyl)-2,5-dihydrofuran-3,4-dicarboxylate (41). Yellow crystals, yield: 0.93 g (92%), m.p. 152-154°C. IR (KBr) (v_{max}/ cm⁻¹): 1734, 1678, 1664, 1580, 1272 cm⁻¹. ¹H-NMR: $\delta =$ 1.25 (3 H, t, ${}^{3}J = 7.4$ Hz, Me), 1.35 (3 H, t, ${}^{3}J = 7.3$ Hz, Me), 1.45-1.95 (10 H, m, 5 CH₂), 3.77 (1 H, m, CH), 3.85 (3 H, s, MeO), 4.14 (1 H, d, ${}^{2}J = 11.2$ Hz, CH), 4.25–4.30 (2 H, m, OCH₂), 4.34 (2 H, q, ${}^{3}J = 7.4$ Hz, OCH₂), 4.55 (1 H, d, ${}^{2}J$ = 11.2 Hz, CH), 7.12 (2 H, d, ${}^{3}J$ = 8.5 Hz, 2 CH), 7.32 (2 H, d, ${}^{3}J = 8.5$ Hz, 2 CH). 13 C-NMR: $\delta = 13.0$ (Me), 14.2 (Me), 24.5 (2 CH₂), 25.4 (CH₂), 33.0 (2 CH₂), 37.3 (CH₂Br), 53.4 (MeO), 57.8 (C-N), 62.4 (OCH₂), 62.9 (OCH₂), 90.4 (C), 113.2 (2 CH), 127.3 (2 CH), 135.2 (C), 137.8 (C), 141.3 (C), 149.0 (C), 156.4 (C=N), 161.6 (C=O), 162.4 (C=O). Anal Calcd for C₂₄H₃₀BrNO₆: C, 56.70; H, 5.95; N, 2.76; found: C, 56.85; H, 6.12; N, 2.93.

Dimethyl 2-bromomethyl-5-(cyclohexylimino)-2-(p-tolyl)-2, 5-dihydrofuran-3,4-dicarboxylate (4m). Pale yellow powder, yield: 0.78 g (85%), m.p. 134–136°C. IR (KBr) (v_{max}/cm^{-1}): 1735, 1684, 1631, 1587, 1281 cm⁻¹. ¹H-NMR: δ = 1.38–1.57 (10 H, m, 5 CH₂), 2.35 (3 H, s, Me), 3.71 (1 H, m, CH), 3.77 (3 H, s, MeO), 3.91 (3H, s, MeO), 4.09 (1 H, d, ²J = 11.0 Hz, CH), 4.52 (1 H, d, ²J = 11.0 Hz, CH), 7.17 (2 H, d, ³J = 7.6 Hz, 2 CH), 7.28 (2 H, d, ³J = 7.6 Hz, 2 CH). ¹³C-NMR: δ = 20.9 (Me), 24.7 (2 CH₂), 25.6 (CH₂), 32.8 (2 CH₂), 36.6 (CH₂Br), 52.7 (MeO), 52.9 (MeO), 56.7 (C–N), 89.7 (C), 125.5 (2 CH), 129.4 (2 CH), 133.6 (C), 137.2 (C), 139.0 (C), 142.9 (C), 154.2 (C=N), 160.9 (C=O), 162.0 (C=O). Anal Calcd for C₂₂H₂₆BrNO₅: C, 56.90; H, 5.64; N, 3.02; found: C, 56.65; H, 5.82; N, 3.32.

Diethyl 2-bromomethyl-5-(cyclohexylimino)-2-(p-tolyl)-2,5dihydrofuran-3,4-dicarboxylate (4n). Pale yellow crystals, yield: 0.91g (92%), m.p. 135–137°C. IR (KBr) (v_{max}/cm^{-1}): 1754, 1689 1655, 1585, 1269 cm⁻¹. ¹H-NMR: δ = 1.23 (3 H, t, ³J = 7.3 Hz, Me), 1.34 (3 H, t, ³J = 7.3 Hz, Me), 1.40–1.92 (10 H, m, 5 CH₂), 2.34 (3 H, s, Me), 3.82 (1 H, m, CH), 4.15 (1 H, d, ²J = 11.0 Hz, CH), 4.24–4.36 (2 H, m, OCH₂), 4.38 (2 H, q, ³J = 7.3 Hz, OCH₂), 4.52 (1 H, d, ²J = 11.0 Hz, CH), 7.65 (2 H, d, ³J = 8.0 Hz, 2 CH), 8.27 (2 H, d, ³J = 8.2 Hz, 2 CH). ¹³C-NMR: δ = 13.6 (Me), 13.9 (Me), 20.9 (Me), 24.6 (2 CH₂), 25.6 (CH₂), 32.8 (2 CH₂), 36.7 (CH₂Br), 56.5 (C–N), 61.8 (OCH₂), 61.9 (OCH₂), 89.6 (C), 125.6 (2 CH), 129.3 (2 CH), 133.8 (C), 137.2 (C), 138.9 (C), 142.7 (C), 154.3 (C=N), 160.6 (C=O), 161.6 (C=O). Anal Calcd for C₂₄H₃₀BrNO₅: C, 58.54; H, 6.14; N, 2.84; found: C, 58.33; H, 5.92; N, 2.58.

Dimethyl 2-bromomethyl-5-(cyclohexylimino)-2-(4-nitrophenyl)-2,5-dihydrofuran-3,4-dicarboxylate (4o). Yellow powder, yield: 0.86 g (87%), m.p. 150–152°C. IR (KBr) ($v_{max}/$ cm⁻¹): 1739, 1697, 1661, 1508, 1262 cm⁻¹. ¹H-NMR: δ = 1.42–1.85 (10 H, m, 5 CH₂), 3.72 (1 H, m, CH), 3.79 (3 H, s, MeO), 3.91 (3 H, s, MeO), 4.11 (1 H, d, ²J = 11.0 Hz, CH), 4.47 (1 H, d, ²J = 11.0 Hz, CH), 7.66 (2 H, d, ³J = 9.0 Hz, 2 CH), 8.24 (2 H, d, ³J = 9.0 Hz, 2 CH). ¹³C-NMR: δ = 24.6 (2 CH₂), 25.2 (CH₂), 32.8 (2 CH₂), 35.8 (CH₂Br), 52.7 (MeO), 53.2 (MeO), 57.0 (C–N), 89.2 (C), 123.9 (2 CH), 127.1 (2 CH), 138.2 (C), 141.7 (C), 143.5 (C), 148.1 (C), 153.3 (C=N), 160.7 (C=O), 161.6 (C=O). MS: *m/z* (%) = 497 (M⁺)

+ 2, 35), 495 (M⁺, 35), 415 (78), 383 (46), 318 (100), 123 (38). Anal Calcd for $C_{21}H_{23}BrN_2O_7$: C, 50.92; H, 4.68; N, 5.66; found: C, 50.74; H, 4.83; N, 5.85.

Diethyl 2-bromomethyl-5-(cyclohexylimino)-2-(4-nitrophenyl)-2,5-dihydrofuran-3,4-dicarboxylate (4p). Yellow crystals, yield: 0.94 g (90%), m.p. 168–170°C. IR (KBr) (v_{max} /cm⁻¹): 1735, 1675, 1655, 1582, 1260 cm⁻¹. ¹H-NMR: $\delta = 1.27$ (3 H, t, ³J= 7.2 Hz, Me), 1.37 (3 H, t, ³J = 7.2 Hz, Me), 1.46–1.91 (10 H, m, 5 CH₂), 3.78 (1 H, m, CH), 4.17 (1 H, d, ²J = 11.0 Hz, CH), 4.21–4.30 (2 H, m, OCH₂), 4.39 (2 H, q, ³J = 7.3 Hz, OCH₂), 4.57 (1 H, d, ²J = 11.0 Hz, CH), 7.53 (2 H, d, ³J = 8.5 Hz, 2 CH), 7.63 (2 H, d, ³J = 8.5 Hz, 2 CH). ¹³C-NMR: δ = 13.7 (Me), 14.0 (Me), 24.7 (2 CH₂), 25.7 (CH₂), 32.9 (2 CH₂), 36.7 (CH₂Br), 56.7 (C–N), 62.3 (OCH₂), 62.4 (OCH₂), 89.7 (C), 127.0 (2 CH), 128.9 (2 CH), 137.5 (C), 140.0 (C), 141.8 (C), 142.5 (C), 154.2 (C=N), 160.7 (C=O), 161.6 (C=O). Anal Calcd for C₂₃H₂₇BrN₂O₇: C, 52.78; H, 5.20; N, 5.35; found: C, 52.57; H, 5.02; N, 5.13.

Dimethyl 2-bromomethyl-5-(cyclohexylimino)-2-biphenyl-2,5-dihydrofuran-3,4-dicarboxylate (4q). Pale yellow powder, yield: 0.72 g (85%), m.p. 141–143°C. IR (KBr) (v_{max}/cm^{-1}): 1725, 1679, 1645, 1585, 1274 cm $^{-1}$. ¹H-NMR: δ = 1.26–1.89 (10 H, m, 5 CH₂), 3.72 (1 H, m, CH), 3.80 (3 H, s, MeO), 3.92 (3H, s, MeO), 4.14 (1 H, d, ${}^{2}J = 11.0$ Hz, CH), 4.57 (1 H, d, ${}^{2}J = 11.0$ Hz, CH), 7.37 (1 H, t, ${}^{3}J = 7.6$ Hz, CH), 7.45 (2 H, t, ${}^{3}J = 7.5$ Hz, 2 CH), 7.50 (2 H, d, ${}^{3}J = 7.6$ Hz, 2 CH), 7.57 (2 H, d, ${}^{3}J = 8.3$ Hz, 2 CH), 7.61 (2 H, d, ${}^{3}J = 8.2$ Hz, 2 CH). ¹³C-NMR: $\delta = 24.8$ (2 CH₂), 25.3 (CH₂), 32.9 (2 CH₂), 36.7 (CH₂Br), 52.9 (MeO), 53.1 (MeO), 56.9 (C-N), 89.5 (C), 126.2 (2 CH), 127.1 (2 CH), 127.5 (2 CH), 127.8 (CH), 128.9 (2 CH), 135.6 (C), 137.5 (C), 140.0 (C), 142.0 (C), 142.9 (C), 158.7 (C=N), 161.1 (C=O), 162.1 (C=O). Anal Calcd for C27H28BrNO5: C, 61.60; H, 5.36; N, 2.66; found: C, 61.45; H, 5.18; N, 2.47.

Diethyl 2-bromomethyl-5-(cyclohexylimino)-2-biphenyl-2,5dihydrofuran-3,4-dicarboxylate (4r). Orange powder, yield: 0.95 g (86%), m.p. 168–170°C. IR (KBr) (v_{max} /cm⁻¹): 1735, 1675, 1667, 1582, 1279 cm⁻¹. ¹H-NMR: $\delta = 1.28$ (3 H, t, ³J = 7.3 Hz, Me), 1.35 (3 H, t, ${}^{3}J$ = 7.4 Hz, Me), 1.27–1.86 (10 H, m, 5 CH₂), 3.75 (1 H, m, CH), 4.23 (1 H, d, ${}^{2}J = 11.0$ Hz, CH), 4.25–4.32 (2 H, m, OCH₂), 4.38 (2 H, q, ${}^{3}J = 7.4$ Hz, OCH₂), 4.56 (1 H, d, ${}^{2}J = 11.2$ Hz, CH), 7.35 (1 H, t, ${}^{3}J =$ 7.5 Hz, CH), 7.42 (2 H, t, ${}^{3}J = 7.6$ Hz, 2 CH), 7.53 (2 H, d, ${}^{3}J = 7.6$ Hz, 2 CH), 7.58 (2 H, d, ${}^{3}J = 8.4$ Hz, 2 CH), 7.65 (2 H, d, ${}^{3}J = 8.4$ Hz, 2 CH). 13 C-NMR: $\delta = 13.5$ (Me), 13.8 (Me), 24.7 (2 CH₂), 25.2 (CH₂), 33.0 (2 CH₂), 37.5 (CH₂Br), 57.6 (C-N), 62.0 (OCH₂), 62.8 (OCH₂), 89.3 (C), 127.2 (2 CH), 127.8 (2 CH), 128.2 (2 CH), 128.7 (CH), 129.2 (2 CH), 136.3 (C), 137.7 (C), 141.3 (C), 142.5 (C), 142.9 (C), 158.4 (C=N), 161.51 (C=O), 162.9 (C=O). Anal Calcd for C₂₉H₃₂BrNO₅: C, 62.82; H, 5.82; N, 2.53; found: C, 62.64; H, 5.68; N, 2.36.

Dimethyl 2-bromomethyl-5-(cyclohexylimino)-2-(4-chlorophenyl)-2,5-dihydrofuran-3,4-dicarboxylate (4s). Yellow powder, yield: 0.84g (87%), m.p. 158–160°C. IR (KBr) (v_{max}/cm^{-1}): 1735, 1684, 1631, 1587, 1281 cm⁻¹. ¹H-NMR: δ = 1.22–1.89 (10 H, m, 5 CH₂), 3.71 (1 H, m, CH), 3.79 (3 H, s, MeO), 3.93 (3 H, s, MeO), 4.08 (1 H, d, ²J = 11.1 Hz, CH), 4.48 (1 H, d, ²J = 11.1 Hz, CH), 7.37 (2 H, d, ³J = 8.2 Hz, 2 CH), 7.39 (2 H, d, ³J = 8.2 Hz, 2 CH). ¹³C-NMR: δ = 24.8 (2 CH₂), 25.7 (CH₂), 32.9 (2 CH₂), 36.4 (CH₂Br), 52.9 (MeO),

53.1 (MeO), 56.9 (C–N), 89.5 (C), 127.3 (2 CH), 129.0 (2 CH), 135.3 (C), 137.6 (C), 142.5 (C), 148.4 (C), 153.9 (C=N), 160.9 (C=O), 161.9 (C=O). Anal Calcd for $C_{21}H_{23}BrCINO_5$: C, 52.03; H, 4.78; N, 2.89; found: C, 52.25; H, 4.60; N, 2.62.

Diethyl 2-bromomethyl-5-(cyclohexylimino)-2-(4-chlorophenyl)-2,5-dihydrofuran-3,4-dicarboxylate (4t). Yellow powder, yield: 0.87 g (85%), m.p. 147-149°C. IR (KBr) (v_{max}/ cm⁻¹): 1732, 1672, 1654, 1578, 1275 cm⁻¹. ¹H-NMR: $\delta =$ 1.27 (3 H, t, ${}^{3}J = 7.5$ Hz, Me), 1.35 (3 H, t, ${}^{3}J = 7.5$ Hz, Me), 1.45-1.87 (10 H, m, 5 CH₂), 3.74 (1 H, m, CH), 4.10 (1 H, d, ${}^{2}J = 11.3$ Hz, CH), 4.09–4.29 (2 H, m, OCH₂), 4.40 (2 H, q, ${}^{3}J = 7.5$ Hz, OCH₂), 4.46 (1 H, d, ${}^{2}J = 11.3$ Hz, CH), 7.33 (2 H, d, ${}^{3}J = 8.0$ Hz, 2 CH), 7.40 (2 H, d, ${}^{3}J = 8.0$ Hz, 2 CH). ¹³C-NMR: $\delta = 13.7$ (Me), 14.0 (Me), 24.5 (2 CH₂), 25.7 (CH₂), 32.8 (2 CH₂), 36.3 (CH₂Br), 56.8 (C-N), 62.3 (OCH₂), 62.4(OCH₂), 89.8 (C), 127.3 (2 CH), 128.5 (2 CH), 134.2 (C), 138.8 (C), 140 (C), 143.4 (C), 148.5 (C), 158.2 (C=N), 160.5 (C=O), 161.4 (C=O). Anal Calcd for C₂₃H₂₇BrClNO₅: C, 53.87; H, 5.31; N, 2.73; found: C, 54.05; H, 5.53; N, 2.94.

Dimethyl 2-bromomethyl-5-(cyclohexylimino)-2-(2-naphthyl)-2,5-dihydrofuran-3,4-dicarboxylate (9u). Yellow powder, yield: 0.85 g (85%), m.p. 129-131°C. IR (KBr) (v_{max}/ cm⁻¹): 1742, 1694, 1658, 1595, 1276 cm⁻¹. ¹H-NMR: $\delta =$ 1.36-1.90 (10 H, m, 5 CH₂), 3.72 (1 H, m, CH), 3.76 (3 H, s, MeO), 3.92 (3 H, s, MeO), 4.24 (1 H, d, ${}^{2}J = 11.0$ Hz, CH), 4.67 (1 H, d, ${}^{2}J = 11.0$ Hz, CH), 7.49–7.91 (7 H, m, 7 CH). ¹³C-NMR: $\delta = 24.8$ (2 CH₂), 25.7 (CH₂), 32.9 (2 CH₂), 36.6 (CH₂Br), 52.9 (MeO), 53.1 (MeO), 56.9 (C-N), 90.7 (C), 123.0 (CH), 125.5 (CH), 126.7 (CH), 127.1 (CH), 127.6 (CH), 128.5 (CH), 128.8 (CH), 132.9 (C), 133.2 (C), 133.9 (C), 146.7 (C), 148.5 (C), 156.4 (C=N), 161.0 (C=O), 162.1 (C=O). MS: m/z (%) = 501 (M⁺ + 2, 25), 499 (M⁺, 25), 420 (100), 388 (48), 323 (70), 127 (58). Anal Calcd for C25H26BrNO5: C, 60.01; H, 5.24; N, 2.80; found: C, 60.22; H, 5.50; N, 2.97.

Diethyl 2-bromomethyl-5-(cyclohexylimino)-2-(2-naphthyl)-2,5-dihydrofuran-3,4-dicarboxylate (9v). Yellow powder, yield: 0.92 g (87%), m.p. 150–152°C. IR (KBr) (v_{max}/cm^{-1}): 1754, 1684, 1625, 1580, 1280 cm⁻¹. ¹H-NMR: δ = 1.23 (3 H, t, ³J = 7.4 Hz, Me), 1.36 (3 H, t, ³J = 7.5 Hz, Me), 1.43–1.90 (10 H, m, 5 CH₂), 3.79 (1 H, m, CH), 4.17–4.23 (2 H, m, OCH₂), 4.25 (1 H, d, ²J = 11.0 Hz, CH), 4.38 (2 H, q, ³J = 7.5 Hz, OCH₂), 4.64 (1 H, d, ²J = 11.0 Hz, CH), 7.50–7.92 (7 H, m, 7 CH). ¹³C-NMR: δ = 13.8 (Me), 14.1 (Me), 24.7 (2 CH₂), 25.8 (CH₂), 32.9 (2 CH₂), 36.8 (CH₂Br), 56.8 (C—N), 62.1 (OCH₂), 62.2 (OCH₂), 90.2 (C), 123.1 (CH), 125.5 (CH), 126.7 (CH), 127.0 (CH), 127.6 (CH), 128.5 (CH), 128.7 (CH), 132.9 (C), 133.2 (C), 134.2 (C), 145.7 (C), 148.5 (C), 156.6 (C=N), 161.3 (C=O), 162.0 (C=O). Anal Calcd for C₂₇H₃₀BrNO₅: C, 61.37; H, 5.72; N, 2.65; found: C, 61.13; H, 5.60; N, 2.41.

Dimethyl 2-bromomethyl-5-(tert-butylimino)-2-(2-naphthyl)-2,5-dihydrofuran-3,4-dicarboxylate (9w). Yellow powder, yield: 0.79 g (84%), m.p. 145–147°C. IR (KBr) (v_{max}/ cm⁻¹): 1745, 1697, 1668, 1590, 1278 cm⁻¹. ¹H-NMR: δ = 1.37 (9 H, s, *Me*₃C), 3.75 (3 H, s, MeO), 3.89 (3 H, s, MeO), 4.27 (1 H, d, ²J = 11.3 Hz, CH), 4.65 (1 H, d, ²J = 11.3 Hz, CH), 7.45–7.92 (7 H, m, 7 CH). ¹³C-NMR: δ = 29.8 (*Me*₃C), 37.8 (CH₂Br), 52.5 (MeO), 52.9 (MeO), 57.8 (C–N), 90.5 May 2011

(C), 123.2 (CH), 125.6 (CH), 126.8 (CH), 127.5 (CH), 127.8 (CH), 128.4 (CH), 128.9 (CH), 132.8 (C), 133.5 (C), 134.0 (C), 146.5 (C), 148.8 (C), 156.6 (C=N), 161.7 (C=O), 162.8 (C=O). Anal Calcd for $C_{23}H_{24}BrNO_5$: C, 58.24; H, 5.10; N, 2.95; found: C, 58.42; H, 5.28; N, 3.16.

Diethyl 2-bromomethyl-5-(tert-butylimino)-2-(2-naphthyl)-2,5-dihydrofuran-3,4-dicarboxylate (9x). Yellow powder, yield: 0.85 g (85%), m.p. 153–155°C. IR (KBr) (v_{max}/cm^{-1}): 1752, 1687, 1637, 1595, 1278 cm⁻¹. ¹H-NMR: δ = 1.27 (3 H, t, ³J = 7.2 Hz, Me), 1.32 (3 H, t, ³J = 7.3 Hz, Me), 1.38 (9 H, s, *Me*₃C), 4.17–4.23 (2 H, m, OCH₂), 4.25 (1 H, d, ²J = 11.2 Hz, CH), 4.38 (2 H, q, ³J = 7.5 Hz, OCH₂), 4.64 (1 H, d, ²J = 11.2 Hz, CH), 7.50–7.92 (7 H, m, 7 CH). ¹³C-NMR: δ = 13.8 (Me), 14.1 (Me), 1.38 (9 H, s, *Me*₃C), 37.8 (CH₂Br), 57.4 (C–N), 62.4 (OCH₂), 62.8 (OCH₂), 89.6 (C), 123.5 (CH), 125.8 (CH), 127.0 (CH), 127.5 (CH), 127.8 (CH), 128.7 (CH), 129.1 (CH), 133.2 (C), 133.8 (C), 134.6 (C), 146.2 (C), 148.2 (C), 157.6 (C=N), 162.3 (C=O), 162.8 (C=O). Anal Calcd for C₂₅H₂₈BrNO₅: C, 59.77; H, 5.62; N, 2.79; found: C, 59.58; H, 5.83; N, 2.55.

General procedure for the preparation of compounds **5a–5j and 5u–5v.** To a stirred solution of 5-alkylimino-2,5-dihydrofuran-3,4-dicarboxylate **4** (2 mmol) in 5 mL of CH₂Cl₂ was added aqueous HCl (5%, 5 mL) slowly at room temperature. After stirring the reaction mixture for 5 h, it was diluted by adding CH₂Cl₂ (2 mL) and H₂O (3 mL). The mixture was stirred for additional 30 min and two layers were separated. The aqueous layer was extracted with CH₂Cl₂ (3 mL × 3). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (SiO₂; *n*-hexanes/EtOAc 8:1) to afford pure desired products.

Dimethyl 2-bromomethyl-5-oxo-2-(p-tolyl)-2,5-dihydrofuran-3,4-dicarboxylate (5a). White crystals yield: 0.63 g (82%), m.p. 125–127°C. IR (KBr) (v_{max}/cm^{-1}): 1720, 1675, 1648, 1582, 1265 cm⁻¹. ¹H-NMR: δ = 2.29 (3 H, s, Me), 3.75 (3 H, s, MeO), 3.82 (3 H, s, MeO), 4.15 (1 H, d, ²J = 11.2 Hz, CH), 4.50 (1 H, d, ²J = 11.2 Hz, CH), 7.12 (2 H, d, ³J = 7.5 Hz, 2 CH), 7.28 (2 H, d, ³J = 7.5 Hz, 2 CH). ¹³C-NMR: δ = 21.4 (Me), 36.5 (CH₂Br), 51.8 (MeO), 52.3 (MeO), 92.4 (C), 125.2 (2 CH), 129.0 (2 CH), 133.6 (C), 138.4 (C), 139.0 (C), 141.7 (C), 158.7 (C=O), 161.7 (C=O), 162.4 (C=O). Anal Calcd for C₁₆H₁₅BrNO₆: C, 50.15; H, 3.95; found: C, 49.95; H, 3.87.

Diethyl 2-bromomethyl-5-oxo-2-(p-tolyl)-2,5-dihydrofuran-3,4-dicarboxylate (5b). White powder, yield: 0.66 g (80%), m.p. 116–118°C. IR (KBr) (v_{max}/cm⁻¹): 1725, 1715, 1700, 1210 cm⁻¹. ¹H-NMR: δ = 1.26 (3 H, t, ³J = 7.2 Hz, Me), 1.35 (3 H, t, ³J = 7.2 Hz, Me), 2.35 (3 H, s, Me), 4.09 (1 H, d, ²J = 11.1 Hz, CH), 4.26–4.32 (2 H, m, OCH₂), 4.33–4.39 (2 H, q, OCH₂), 4.45 (1 H, d, ²J = 11.1 Hz, CH), 7.18 (2 H, d, ³J = 7.6 Hz, 2 CH), 7.29 (2 H, d, ³J = 7.5 Hz, 2 CH). ¹³C-NMR: δ = 13.6 (Me), 14.0 (Me), 21.0 (Me), 35.4 (CH₂Br), 62.5 (OCH₂), 62.8 (OCH₂), 87.4 (C), 125.5 (2 CH), 129.5 (C), 129.6 (2 CH), 130.9 (C), 139.9 (C), 155.1 (C), 159.9 (C=O), 160.2 (C=O), 165.4 (C=O). Anal Calcd for C₁₈H₁₉BrO₆: C, 52.57; H, 4.66; found: C, 52.40; H, 4.38.

Dimethyl 2-bromomethyl-5-oxo-2-(4-nitrophenyl)-2,5-dihydrofuran-3,4-dicarboxylate (5c). Yellow powder, yield: 0.68 g (82%), m.p. 148–150°C. IR (KBr) (v_{max}/cm^{-1}): 1737, 1683, 1652, 1574, 1225, 1154 cm⁻¹. ¹H-NMR: δ = 3.82 (3 H, s, MeO), 3.87 (3 H, s, MeO), 4.20 (1 H, d, ²J = 11.5 Hz, CH), 4.45 (1 H, d, ${}^{2}J$ = 11.5 Hz, CH), 7.55 (2 H, d, ${}^{3}J$ = 8.4 Hz, 2 CH), 8.27 (2 H, d, ${}^{3}J$ = 8.4 Hz, 2 CH). 13 C-NMR: δ = 34.5 (CH₂Br), 52.6 (MeO), 53.2 (MeO), 90.2 (C), 122.7 (2 CH), 128.4 (2 CH), 138.7 (C), 141.0 (C), 142.7 (C), 147.8 (C), 158.4 (C=O), 161.2 (C=O), 162.0 (C=O). Anal Calcd for C₁₅H₁₂BrNO₈: C, 43.50; H, 2.92; N, 3.38; found: C, 43.38; H, 2.84; N, 3.25.

Diethyl 2-bromomethyl-5-oxo-2-(4-nitrophenyl)-2,5-dihydrofuran-3,4-dicarboxylate (5d). Pale yellow powder, yield: 0.75 g (85%), m.p. 162–164°C. IR (KBr) (v_{max}/cm^{-1}): 1757, 1687, 1667, 1592, 1248, 1147 cm⁻¹. ¹H-NMR: δ = 1.25 (3 H, t, ³J = 7.3 Hz, Me), 1.35 (3 H, t, ³J = 7.3 Hz, Me), 4.12 (1 H, d, ²J = 10.8 Hz, CH), 4.25–4.31 (2 H, m, OCH₂), 4.37 (1 H, d, ²J = 10.8 Hz, CH), 4.42 (2 H, q, ³J = 7.3 Hz, OCH₂), 7.65 (2 H, d, ³J = 8.2 Hz, 2 CH), 8.25 (2 H, d, ³J = 8.2 Hz, 2 CH). ¹³C-NMR: δ = 13.8 (Me), 14.0 (Me), 37.2 (CH₂Br), 61.8 (OCH₂), 62.4 (OCH₂), 91.4 (C), 123.7 (2 CH), 128.7 (2 CH), 141.3 (C), 141.7 (C), 142.8 (C), 147.6 (C), 159.4 (C=O), 161.0 (C=O), 162.3 (C=O). Anal Calcd for C₁₇H₁₆BrNO₈: C, 46.17; H, 3.65; N, 3.17; found: C, 46.22; H, 3.41; N, 3.05.

Dimethyl 2-bromomethyl-5-oxo-2-(p-biphenyl)-2,5-dihydrofuran-3,4-dicarboxylate (5e). Pale yellow powder, yield: 0.71 g (80%), m.p. 145–147°C. IR (KBr) (v_{max}/cm^{-1}): 1735, 1668, 1654, 1572, 1275, 1124 cm⁻¹. ¹H-NMR: δ = 3.80 (3 H, s, MeO), 3.87 (3H, s, MeO), 4.18 (1 H, d, ²J = 11.0 Hz, CH), 4.38 (1 H, d, ²J = 11.0 Hz, CH), 7.35 (1 H, t, ³J = 7.5 Hz, CH), 7.38 (2 H, t, ³J = 7.4 Hz, 2 CH), 7.52 (2 H, d, ³J = 7.5 Hz, 2 CH), 7.58 (2 H, d, ³J = 8.0 Hz, 2 CH), 7.67 (2 H, d, ³J = 8.2 Hz, 2 CH). ¹³C-NMR: δ = 38.4 (CH₂Br), 51.7 (MeO), 52.6 (MeO), 90.8 (C), 127.5 (2 CH), 128.2 (2 CH), 128.6 (2 CH), 129.2 (CH), 129.8 (2 CH), 135.8 (C), 138.4 (C), 141.5 (C), 142.4 (C), 143.7 (C), 159.4 (C=O), 162.3 (C=O), 162.7 (C=O). Anal Calcd for C₂₁H₁₇BrO₆: C, 56.65; H, 3.85; found: C, 56.88; H, 3.69.

Diethyl 2-bromomethyl-5-oxo-2-(p-biphenyl)-2,5-dihydrofuran-3,4-dicarboxylate (5f). White powder, yield: 0.72 g (76%), m.p. 158–160°C. IR (KBr) (v_{max}/cm⁻¹): 1728, 1664, 1648, 1594, 1268, 1157 cm⁻¹. ¹H-NMR: $\delta = 1.24$ (3 H, t, ³J = 7.3 Hz, Me), 1.32 (3 H, t, ${}^{3}J$ = 7.4 Hz, Me), 4.16 (1 H, d, $^{2}J = 11.5$ Hz, CH), 4.25–4.32 (2 H, m, OCH₂), 4.38 (2 H, q, ${}^{3}J = 7.3$ Hz, OCH₂), 4.47 (1 H, d, ${}^{2}J = 11.5$ Hz, CH), 7.27 (1 H, t, ${}^{3}J = 7.4$ Hz, CH), 7.36 (1 H, t, ${}^{3}J = 7.5$ Hz, CH), 7.42 (2 H, d, ${}^{3}J = 7.5$ Hz, 2 CH), 7.52 (2 H, d, ${}^{3}J = 8.2$ Hz, 2 CH), 7.58 (2 H, d, ${}^{3}J$ = 8.2 Hz, 2 CH). 13 C-NMR: δ = 13.9 (Me), 14.0 (Me), 37.2 (CH₂Br), 61.4 (OCH₂), 62.4 (OCH₂), 91.4 (C), 127.6 (2 CH), 127.8 (2 CH), 128.3 (2 CH), 128.7 (CH), 129.2 (2 CH), 137.4 (C), 138.0 (C), 141.3 (C), 142.7 (C), 143.5 (C), 159.3 (C=O), 161.8 (C=O), 163.2 (C=O). MS: m/z (%) = 474 (M⁺ + 2, 10), 472 (M⁺, 10), 428 (58), 321 (78), 154 (100), 152 (48), 45 (68). Anal Calcd for C₂₃H₂₁BrO₆: C, 58.36; H, 4.47; found: C, 58.50; H, 4.25.

Dimethyl 2-bromomethyl-5-oxo-2-(4-chlorophenyl)-2,5dihydrofuran-3,4-dicarboxylate (5g). Pale yellow powder, yield: 0.66 g (82%), m.p. 135–137°C. IR (KBr) (v_{max}/cm^{-1}): 1736, 1678, 1643, 1567, 1248, 1157 cm⁻¹. ¹H-NMR: $\delta = 3.78$ (3 H, s, MeO), 3.86 (3 H, s, MeO), 4.15 (1 H, d, ²J = 10.5 Hz, CH), 4.45 (1 H, d, ²J = 10.5 Hz, CH), 7.32 (2 H, d, ³J = 8.2 Hz, 2 CH), 7.38 (2 H, d, ³J = 8.2 Hz, 2 CH). ¹³C-NMR: δ = 38.6 (CH₂Br), 51.7 (MeO), 52.6 (MeO), 90.8 (C), 128.4 (2 CH), 128.8 (2 CH), 136.4 (C), 138.2 (C), 143.3 (C), 148.6 (C), 158.9 (C=O), 162.3 (C=O), 163.4 (C=O). Anal Calcd for $C_{15}H_{12}BrClO_6$: C, 44.64; H, 3.00; found: C, 44.49; H, 3.23.

Diethyl 2-bromomethyl-5-oxo-2-(4-chlorophenyl)-2,5-dihydrofuran-3,4-dicarboxylate (5h). White powder, yield: 0.69 g (80%), m.p. 147–149°C. IR (KBr) (v_{max}/cm^{-1}): 1725, 1675, 1660, 1574, 1265, 1148 cm⁻¹. ¹H-NMR: δ = 1.23 (3 H, t, ³J = 7.3 Hz, Me), 1.30 (3 H, t, ³J = 7.3 Hz, Me), 4.25 (1 H, d, ²J = 11.0 Hz, CH), 4.25–4.30 (2 H, m, OCH₂), 4.36 (2 H, q, ³J = 7.4 Hz, OCH₂), 4.43 (1 H, d, ²J = 11.0 Hz, CH), 7.28 (2 H, d, ³J = 7.8 Hz, 2 CH), 7.37 (2 H, d, ³J = 7.8 Hz, 2 CH). ¹³C-NMR: δ = 13.8 (Me), 14.0 (Me), 37.5 (CH₂Br), 61.6 (OCH₂), 62.3 (OCH₂), 91.5 (C), 127.8 (2 CH), 128.7 (2 CH), 133.8 (C), 139.3 (C), 141.4 (C), 143.5 (C), 148.7 (C), 159.4 (C=O), 161.9 (C=O), 162.7 (C=O). Anal Calcd for C₁₇H₁₆BrClO₆: C, 47.30; H, 3.75; found: C, 47.57; H, 3.99.

Dimethyl 2-bromomethyl-5-oxo-2-(4-methoxyphenyl)-2,5dihydrofuran-3,4-dicarboxylate (5i). Yellow powder, yield: 0.68 g (85%), m.p. 142–144°C. IR (KBr) (v_{max} /cm⁻¹): 1738, 1680, 1648, 1567, 1257, 1124 cm⁻¹. ¹H-NMR: δ = 3.78 (3 H, s, MeO), 3.82 (3 H, s, MeO), 3.94 (3 H, s, MeO), 4.12 (1 H, d, ²J = 11.3 Hz, CH), 4.38 (1 H, d, ²J = 11.3 Hz, CH), 7.14 (2 H, d, ³J = 8.2 Hz, 2 CH), 7.38 (2 H, d, ³J = 8.2 Hz, 2 CH). ¹³C-NMR: δ = 37.6 (CH₂Br), 51.3 (MeO), 52.2 (MeO), 53.6 (MeO), 92.0 (C), 114.0 (2 CH), 128.7 (2 CH), 136.2 (C), 138.5 (C), 142.3 (C), 147.8 (C), 158.9 (C=O), 161.4 (C=O), 162.5 (C=O). Anal Calcd for C₁₆H₁₅BrO₇: C, 48.14; H, 3.79; found: C, 48.37; H, 3.92.

Diethyl 2-bromomethyl-5-oxo-2-(4-methoxyphenyl)-2,5dihydrofuran-3,4-dicarboxylate (5j). Yellow crystals, yield: 0.67 g (78%), m.p. 146–148°C. IR (KBr) (v_{max} /cm⁻¹): 1745, 1700, 1684, 1625, 1485, 1378 cm⁻¹. ¹H-NMR: δ = 1.25 (3 H, t, ³J = 7.2 Hz, Me), 1.32 (3 H, t, ³J = 7.3 Hz, Me), 4.08 (1 H, d, ²J = 11.2 Hz, CH), 4.20–4.26 (2 H, m, OCH₂), 4.34 (2 H, q, ³J = 7.3 Hz, OCH₂), 4.38 (1 H, d, ²J = 11.2 Hz, CH), 6.74 (2 H, d, ³J = 8.4 Hz, 2 CH), 7.36 (2 H, d, ³J = 8.4 Hz, 2 CH). ¹³C-NMR: δ = 13.6 (Me), 14.2 (Me), 38.2 (CH₂Br), 52.8 (MeO), 61.8 (OCH₂), 62.3 (OCH₂), 91.3 (C), 113.8 (2 CH), 127.8 (2 CH), 136.3 (C), 138.5 (C), 142.4 (C), 148.5 (C), 158.8 (C=O), 162.4 (C=O), 163.2 (C=O). Anal Calcd for C₁₈H₁₉BrO₇: C, 50.60; H, 4.48; found: C, 50.37; H, 4.71.

Dimethyl 2-bromomethyl-5-oxo-(2-naphthyl)-2,5-dihydrofuran-3,4-dicarboxylate (5u). Yellow powder, yield: 0.70 g (83%), m.p. 134–136°C. IR (KBr) (v_{max}/cm^{-1}): 1745, 1715, 1682, 1597, 1452, 1354, 1245 cm⁻¹. ¹H-NMR: δ = 3.75 (3 H, s, MeO), 3.87 (3 H, s, MeO), 4.18 (1 H, d, ²J = 10.8 Hz, CH), 4.47 (1 H, d, ²J = 10.8 Hz, CH), 7.35–7.42 (7 H, m, 7 CH). ¹³C-NMR: δ = 37.4 (CH₂Br), 51.7 (MeO), 52.8 (MeO), 92.2 (C), 122.8 (CH), 124.5 (CH), 125.7 (CH), 127.8 (CH), 128.2 (CH), 128.6 (CH), 129.3 (CH), 133.4 (C), 133.8 (C), 134.5 (C), 145.8 (C), 147.6 (C), 159.7 (C=O), 161.8 (C=O), 162.5 (C=O). Anal Calcd for C₁₉H₁₅BrO₆: C, 54.43; H, 3.61; found: C, 54.64; H, 3.37.

Diethyl 2-bromomethyl-5-oxo-2-(2-naphthyl)-2,5-dihydrofuran-3,4-dicarboxylate (5ν). Yellow powder, yield: 0.76 g (85%), m.p. 125–127°C. IR (KBr) (v_{max}/cm^{-1}): 1752, 1735, 1725, 1234 cm⁻¹. ¹H-NMR: δ = 1.26 (3 H, t, ³J = 7.2 Hz, Me), 1.36 (3 H, t, ³J = 7.4 Hz, Me), 4.22 (1 H, d, ²J = 11.1 Hz, CH), 4.27–4.31 (2 H, m, OCH₂), 4.34 (2 H, q, ³J = 7.4 Hz, OCH₂), 4.60 (1 H, d, ²J = 11.1 Hz, CH), 7.45– 7.94 (7 H, m, 7 CH). ¹³C-NMR: δ = 13.6 (Me), 13.9 (Me), 35.3 (CH₂Br), 62.6 (OCH₂), 62.9 (OCH₂), 87.4 (C), 122.1 (CH), 125.4 (CH), 126.9 (CH), 127.3 (CH), 127.5 (CH), 128.3 (CH), 129.1 (CH), 129.5 (C), 130.9 (C), 132.8 (C), 133.3 (C), 155.1 (C), 159.7 (C=O), 160.2 (C=O), 165.4 (C=O). Anal Calcd for $C_{21}H_{19}BrO_6$: C, 56.39; H, 4.28; found: C, 56.62; H, 4.09.

Acknowledgment. The authors gratefully acknowledge financial and spiritual support from the National Endowment for the Elite.

REFERENCES AND NOTES

[1] Dean, F. M. In Advanced Heterocyclic Chemistry; Katritzky, A. R., Eds.; Academic Press: New York, 1982; Vol. 30, p 167.

[2] Dunlop, A. P.; Peters, F. N. The Furans; Reinhold: New York, 1953.

[3] Corey, E. J.; Cheng, X. M. The Logic of Chemical Synthesis; Wiley: New York, 1989.

[4] Benassi, R. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: Oxford, 1996; Vol. 2, p 259.

[5] Onitsuka, S.; Nishino, H. Tetrahedron 2003, 59, 755.

[6] Yao, T.; Zhang, X.; Larock, R. C. J Am Chem Soc 2004, 126, 11164.

[7] Fan, M.; Guo, L.; Liu, X.; Liu, W.; Liang, Y. Synthesis 2005, 391.

[8] Jung, C. K.; Wang, J. C.; Krische, M. J. J Am Chem Soc 2004, 126, 4118.

[9] Lo, C. Y.; Guo, H.; Lian, J. J.; Shen, F. M.; Liu, R. S. J Org Chem 2002, 67, 3930.

[10] Pei, W. P.; Pei, J.; Li, S. H.; Ye, X. L. Synthesis 2000, 2069.

[11] Yavari, I.; Hossaini, Z.; Sabbaghan, M. Mol Divers 2006, 10, 479.

[12] Yavari, I.; Sabbaghan, M.; Hossaini Z. Monatsh Chem 2008, 139, 625.

[13] Nair, V.; Vinod, A. U.; Abhilash, N.; Menon, R. S.; Santhi, V.; Varma, R. L.; Viji, S.; Mathewa, S.; Srinivas, R. Tetrahedron 2003, 59, 10279.

[14] Chatani, N.; Oshita, M.; Tobisu, M.; Ishii, Y.; Murai, S. J Am Chem Soc 2003, 125, 7812.

[15] Bez, B.; Zhao, C. G. Org Lett 2003, 5, 4991.

[16] Ma, S.; Xie, H. J Org Chem 2002, 67, 6575.

[17] Ma, S.; Xie, H. Tetrahedron 2005, 61, 251.

[18] Shaabani, A.; Soleimani, E.; Sarvary A. Monatsh Chem 2008, 139, 629.

[19] Maghsoodlou, M. T.; Hazeri, N.; Habibi-Khorasani, S. M.; Marandi, G.; Nassiri, M. Synth Commun 2005, 35, 2771.

[20] Brown, S. P.; Goodwin, N. C.; MacMillan, D. W. C. J Am Chem Soc 2003, 125, 1192.

[21] (a) Chia, Y.; Chang, F.; Fissohamione Wu, Y. Tetrahedron Lett 1999, 40, 7513; (b) Evidente, A.; Sparapano, L. J Nat Prod 1994, 57, 1720.

[22] (a) Yoneda, E.; Kaneko, T.; Zhang, S.; Onitsuka, K.; Takahashi, S. Org Lett 2000, 2, 441; (b) Linclau, B.; Boydell, A. J.; Clarke, P. J.; Horan, R.; Jacquet, C. J Org Chem 2003, 68, 1821; (c) Hakimelahi, G. H.; Mei, N. W.; Moosavi-Movahedi, A. A.; Davari, H.; Hakimelahi, S.; King, K.-Y.; Ru Hwu, J.; Wen, Y.-S. J Med Chem 2001, 44, 1749; (d) Marshall, J. A.; Piettre, A.; Paige, M. A.; Valeriote, F. J Org Chem 2003, 68, 1780; (e) Ma, S.; Lu, L.; Lu, P. J Org Chem 2005, 70, 1063; (f) Ma, S.; Duan, D.; Shi, Z. Org Lett 2000, 2, 1419.

[23] (a) Renard, M.; Ghosez, L. A. Tetrahedron 2001, 57, 2597;
(b) Dehoux, C.; Gorrichon, L.; Baltas, M. Eur J Org Chem 2001, 1105; (c) Jauch, J. Angew Chem Int Ed Engl 2000, 39, 2764.

May 2011

[24] (a) Nakamura, I.; Yamamoto, Y. Chem Rev 2004, 104, 2127; (b) Ma, S.; Wu, S. Tetrahedron Lett 2001, 42, 4075; (c) Ma, S.; Yu, Z. Angew Chem Int Ed Engl 2002, 41, 1775; (d) Ma, S.; Yu, Z. Org Lett 2003, 5, 1507; (e) Movassaghi, M.; Jacobsen, E. N. J Am Chem Soc 2002, 124, 2456.

[25] Foroumadi, A.; Zamanian, S.; Samzadeh-Kermani, A.; Sha-fiee, A. Synth Commun 2009, 39, 1722.

[26] Alizadeh, B. H.; Ostad, S. N.; Foroumadi, A.; Amini, M.; Dowlatabadi, R.; Navidpour, L.; Shafiee, A. Arkivok 2008, 13, 45.

[27] Ugi, I. Isonitrile Chemistry; Academic Press: London, 1971.

[28] Dömling, A.; Ugi, I. Angew Chem Int Ed Engl 2000, 39, 3168.

[29] Maghsoodlou, M. T.; Hazeri, N.; Habibi-Khorasani, S. M.; Heydari, R.; Marandi, G.; Nassiri, M. Synth Commun 2005, 35, 2569.

- [30] Teimouri, M. B.; Shaabani, A.; Bazhrang, R. Tetrahedron 2006, 62, 1845.
- [31] Nair, V.; Menon, R. S.; Deepthi, A.; Devi, B. R.; Biju, A. T. Tetrahedron Lett 2005, 46, 1337.